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1 | Introduction

Implicit in the literature on Bayesian updating is the idea that information process-
ing happens in two stages. First: exogenous, non-inferential information possession.
Metaphorically, we can think of this stage as involving theworld ‘flinging’ some infor-
mation at the agent. Call the flung stuff exogenous evidence. Second: inferential belief
revision, which may lead the agent to possess further information endogenously.

Question: How do you rationally revise beliefs in response to exogenous evidence?
Bayesians say it is to conditionalize on the evidence:

𝑝new( · ) = 𝑝old( · | 𝐸) :=
𝑝old( · ∧ 𝐸)
𝑝old(𝐸)

. (Conditionalization)

Greaves and Wallace (G&W) defend conditionalization via accuracy-maximization:

1. RatAcc: The rational update procedure is the one that maximizes expected
accuracy according to any strictly proper scoring rule.

2. Conditionalizing on one’s evidence is the update procedure that maximizes
expected accuracy according to any strictly proper scoring rule.

3. Therefore, conditionalizing on one’s evidence is the rational update procedure.

Schoenfield argues that, in general, the second premise is not true:

1. In general, the update procedure that maximizes expected accuracy according
to any strictly proper scoring rule is conditionalization∗:

𝑝new( · ) = 𝑝old( · | ⟨I learned that 𝐸⟩) (Conditionalization∗)

2. CentralThesis: RatAcc implies that in general the rational update procedure
is conditionalization∗, and not conditionalization.

She further argues that epistemologists who endorse RatAcc are committed to the
existence of a class of propositions concerning an agent’s situation, such that, for any
rational agent S, these propositions will be true of S iff she is certain of them.

2 | Setup

Scoring Rules: A scoring rule is a functionA : 𝐶𝑆×𝑆 → [0, 1] that takes a credence
function 𝑐 ∈ 𝐶𝑆 and a state 𝑠 ∈ 𝑆, where 𝐴(𝑐, 𝑠) = 𝑡means that 𝐴 thinks that credence
function 𝑐 has accuracy 𝑡 at state 𝑠. Relative to a probability function 𝑝 over 𝑆, we can
take the expected accuracy of a credence function 𝑐 across any subset of states 𝑃𝑖 ⊆ 𝑆:

𝔼A
𝑝

𝑃𝑖
(𝑐) =def

∑︁
𝑠∈𝑃𝑖

𝑝(𝑠)A(𝑐, 𝑠). (𝔼A)

A scoring rule is strictly proper if the value above is maximized at 𝑐 = 𝑝. This captures
the idea of expected accuracy being “according to 𝑝’s estimate.
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LearningExperiences andUpdateProcedures: Tomorrowyouwake up and some
proposition 𝑃might be flung at you as your evidence or, more boringly, there is some
proposition “that you exogenously learn” (we can represent having no evidence flung
at you as the same as having the trivial proposition ⊤ flung at you).

Let 𝐿(𝑃) be the proposition ⟨I learned that 𝐸⟩. Then if 𝑋1, 𝑋2, . . . ,⊤ are the proposi-
tions youmight learn (call the set of them 𝑋 ), then 𝐿(𝑋) = {𝐿(𝑋1), 𝐿(𝑋2), . . . , 𝐿(⊤)},
the set of propositions that describe what you might learn, partition the set of states:
in every possibility you learn exactly one thing, so exactly one of the 𝐿(𝑋𝑖) is true.

A [learning] update procedure is a function 𝑈𝐿 which maps each proposition 𝑋𝑖 an
agent might learn to a credence function 𝑈𝐿(𝑋𝑖), “with the intended interpretation
that an agent conforming to 𝑈𝐿 adopts 𝑈𝐿(𝑋𝑖) as her credence function if and only
if the proposition she learns upon undergoing the learning experience is 𝑋𝑖.”

The expected accuracy of an update procedure𝑈𝐿 relative to a credence function 𝑝 can
be calculated as the expected accuracy of𝑈𝐿(𝑋𝑖) for the states in each 𝑋𝑖 (according
to 𝑝), weighted by the likelihood (again according to 𝑝) that a subject learns 𝑋𝑖:

𝔼A
𝑝

update(𝑈𝐿) =def

∑︁
𝐿(𝑋𝑖 ) ∈𝐿(𝑋 )

𝔼A
𝑝

𝐿(𝑋𝑖 ) (𝑈𝐿(𝑋𝑖)) (Update 𝔼A)

3 | Results

1. G&W (Greaves and Wallace, 2006): Let 𝑆 be a set of states and let 𝑃 = {𝑃1, . . . , 𝑃𝑛}
partition 𝑆. Let Fbe the set of functions that assign a credence function over 𝑆 to
each 𝑃𝑖. Then if A is a strictly-proper scoring rule, the function 𝐹 that maximizes

𝔼A
𝑝

function(𝐹) =def

∑︁
𝑃𝑖∈𝑃

𝔼A
𝑝

𝑃𝑖
(𝐹 (𝑃𝑖)) (Function 𝔼A)

is the function 𝐹 (𝑃𝑖) = 𝑝( · | 𝑃𝑖).

Now let an experiment be a learning experience where you will exogenously learn
proposition 𝑋𝑖 if and only if 𝑋𝑖 is true, i.e. 𝐿(𝑋𝑖) ↔ 𝑋𝑖. Then:

2. CondMax: Suppose you know you will perform an experiment 𝑋 . Then the
update procedure that maximizes Update 𝔼A is

𝑈𝐿(𝑋𝑖) = 𝑝( · | 𝑋𝑖). (conditionalization)

Schoenfield shows that an agent will be certain that 𝐿(𝑋𝑖) ↔ 𝑋𝑖 if and only if:

Partitionality: The propositions that the agent assigns non-zero cre-
dence to exogenously learning partition the agent’s possibility space.

Factivity: The agent is certain that if she learns 𝑃, 𝑃 is true.

So CondMax only implies that conditionalization maximizes expected accuracy in
caseswhere Partitionality and Factivity are true. And both of these are substantive
assumptions. If we remove the condition that 𝐿(𝑋𝑖) ↔ 𝑋𝑖, we get:
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3. Generalized CondMax: Suppose you know you will undergo a learning expe-
rience 𝑋 . Then the update procedure that maximizes Update 𝔼A is 𝑈𝐿(𝑋𝑖) = 𝑝( · |
𝑋𝑖). Then the update procedure that maximizes Update 𝔼A is

𝑈𝐿(𝑋𝑖) = 𝑝( · | 𝐿(𝑋𝑖)). (conditionalization∗)

Generalized CondMax is strictly more general than CondMax. In cases where
𝐿(𝑋𝑖) ↔ 𝑋𝑖, plugging 𝑋𝑖 in for 𝐿(𝑋𝑖) in the statement of Generalized CondMax
returns CondMax.

Generalized CondMax and RatAcc together imply:

4. Cond
∗: The rational update procedure is conditionalization∗. Upon learning 𝑃𝑖,

an ideally rational agent will conditionalize on the proposition that she learned 𝑃𝑖.

Cond∗ and the definition of conditional probability imply:

4. LL: If one learns 𝑃𝑖, one is rationally required to be certain that one learned 𝑃𝑖.

(If one is rational, then when one learns 𝑃𝑖, 𝑝new(𝐿(𝑃𝑖)) = 𝑝old(𝐿(𝑃𝑖) | 𝐿(𝑃𝑖)) = 1.)

And externalists are apt to dislike this sort of iteration principle.

4 | Getting Out of the Results

Bronfman (2014) argues: the rational update procedure isn’t the accuracy-maximizing
procedure from the pool of possible update procedures, but from the pool of update proce-
dures that the agent can competently execute. Schoenfield has some smaller complaints,
but ultimately objects that we are looking for an idealized update procedure.

Distinguish between agents who are idealized information possessors (they know all
and only the truths) and agents who are idealized information processors (they may
not know all the truths, but what they do know, they are perfect at updating on).
If we’re interested in idealized information processing, Schoenfield argues, then any
operation performed on the proposition exogenously learned should be admissible.
But then conditionalization∗ is allowed:

like conditionalization, conditionalization∗ is simply an operation per-
formed on the proposition exogenously learned. The operation is the
following: if 𝑃 is the proposition learned, take 𝑃, attach an 𝐿 to it, and
conditionalize on the resulting proposition: 𝐿(𝑃).

Question: doesn’t conditionalizing on 𝐿(𝑃) require the agent to possess more infor-
mation (namely 𝐿(𝑃)) than just possessing 𝑃? An objector should say: just attaching
an 𝐿 to the proposition 𝑃 doesn’t give you the information that you learned that 𝑃.
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5 | More Results

5. Super Generalized CondMax: Let 𝑅 be a relation and𝑈𝑅 be a function from a
set of propositions 𝑋 to credence functions such that an agent 𝐴 conforming to 𝑈𝑅

adopts𝑈𝑅 (𝑋𝑖) whenever 𝑅(𝐴, 𝑋𝑖). If 𝑅(𝐴, 𝑋𝑖) is always true only for exactly one 𝑋𝑖,
then the𝑈𝑅 such that conforming to𝑈𝑅 maximizes expected accuracy1 is

𝑈𝑅 (𝑋𝑖) = 𝑝( · | 𝑅(𝐴, 𝑋𝑖)) (relation-conditionalization)

6. Super-Duper Generalized CondMax (SD CondMax): Let 𝑃 = {𝑃1, . . . , 𝑃𝑛}
partition a set of states Ω. Let 𝑈𝐹 be a function from 𝑃 to credence functions such
that an agent adopts 𝑈𝐹 (𝑃𝑖) whenever 𝑃𝑖 obtains. The 𝑈𝐹 such that conforming to
𝑈𝐹 maximizes expected accuracy is

𝑈𝐹 (𝑃𝑖) = 𝑝( · | 𝑃𝑖).2 (function-conditionalization)

Schoenfield argues that SD CondMax and RatAcc together imply:

7. Luminous Infallibility: There is a class of propositions concerning an agent’s
situation, such that, for any agent S, if S is rational, these propositions will be true of
S if and only if she is certain of them.

Thus: “There is a sense, then, in which a defender of RatAcc can’t help but adopt
some version of the truth rule. For whatever one’s theory of rationality is, one can
partition the space of possible situations an agent might find herself in in such a way
that the same doxastic state is rational in each cell of the partition. Perhaps, for ex-
ample, a theorist partitions the space based on what the agent’s phenomenology is:
{She has phenomenology P1, she has phenomenology P2. . .} or what she learns: {She
learns 𝑋1, she learns 𝑋2, . . .} or what her evidence is: {She possesses E1, She possess
E2. . .}. Call this partition, whatever it is, 𝑃.”

Then SD CondMax implies that the accuracy-maximizing update procedure is to
conditionalize on 𝑃𝑖 whenever 𝑃𝑖 is true. But if an agent conditionalizes on 𝑃𝑖 when-
ever 𝑃𝑖 is true, then they are certain of 𝑃𝑖 whenever 𝑃𝑖 is true. Thus:

If RatAcc is true, then the propositions whose truth determines what
credence function it is rational for an agent to adopt are propositions
that a rational agent is luminously infallible about that is, they are propo-
sitions that she will be certain of if and only if they are true.

Schoenfield’s final upshot: “the thought that rationality involvesmaximizing expected
accuracy and such claims as Luminous Infallibility are intertwined.”

1. The quantity maximized is

𝔼A
𝑝

relation (𝑈𝑅) =def
∑︁

𝑅 (𝑆,𝑋𝑖 ) ∈𝑅 (𝑆,𝑋 )
𝔼A

𝑝

𝑅 (𝑆,𝑋𝑖 ) (𝑈𝑅 (𝑋𝑖)) (Relation 𝔼A)

2. This follows directly from G&W: 𝐹 could be thought of as the function that describes the agent who
adopts update procedure𝑈𝐹 . The quantity maximized is Function 𝔼A, with𝑈𝐹 substituted for 𝐹.
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