Greco (2014) + Bird & Pettigrew (2019) Focused

Bird & Pettigrew (2019) (B&P) are interested in Externalism $\equiv \neg KK$. They focus on EnoKK:

Externalism $\rightarrow \neg KK$ (EnoKK)

KK is the principle that if you know p, then you know that you know p.¹ B&P define externalism as "the claim that for some necessary condition on knowledge, ϕ , it is possible for some subject to know some proposition and believe that she knows it without knowing that ϕ holds of it with respect to her" (p. 1715).²

Greco (2014) argues that:

- (i) There's an inconsistent triad of (a) intuitive higher-order *intersubjective* knowledge, (b) a knowledge closure principle³, (c) and the denial of KK.
- (ii) An information-carrying 'normal conditions' analysis of knowledge explains the appeal of higher-order intersubjective knowledge, KK, and closure.
- (iii) (Apparent) counterexamples to KK are best handled with *contextualism*.⁴

Greco's analysis in (ii) is intuitively externalist, so if he's right that it's compatible with KK, then EnoKK is false.

B&P attack (ii), arguing that Greco's analysis makes knowledge too easy and is really internalist.

Greco's Analysis and Argument for KK

- Greco offers a Dretske-like analysis of knowledge that's basically: *s* knows *p* iff
- (3) conditions are normal;
- (4) *s* is in a state *X* such that, in normal conditions, if *s* is in *X*, then p

Greco proves that on this analysis, higher-order knowledge comes for free with first-order knowledge:

If *S* is in a state that carries the information that *P*, then that very state also carries the information that *S* is in a state that carries the information that *P*. Why is this? Higher-order information carrying requires that one be in a state that is correlated (given normal conditions) with being in a state that is correlated (given normal conditions) with *P*. But because every state is correlated with itself, if one is in a state *X* that is correlated with *P*, then one is also in a state (*X* itself) that is correlated with being in a state that is correlated with *P*. (p. 184)

 1 Kp \rightarrow KKp (KK)

 $^{2} \diamond \exists s \exists p(K_{s}p \& B_{s}K_{s}p \& \neg K_{s}\Phi_{s}p) \quad (\text{externalism})$

³ If *S* knows that *p*, and *p* entails *q*, then *S* knows that *q*.

⁴ Within a context, KK holds. But considering the question "Does S know that S knows that P?," might shift the context into a new one where S has neither second- nor first-order knowledge.

The full account: s knows p iff

- 1. *s* believes *p*;
- 2. p;
- 3. conditions are normal;
- s is in a state X such that, in normal conditions, if s is in X, then p;
- s's being in state X causes or constitutes s's belief p

Greco idealizes such that that (3) and (4) entail (5) and (1). (3) and (4) also entail (2).

B&P's Complaints

Greco's Analysis Makes Knowledge Too Easy

B&P observe that Greco's analysis makes knowledge easy. If I know any proposition, then conditions are normal. Thus, for any state I'm in and any proposition that holds normally when I'm in that state, then I know that proposition, even if I have no reason to rule out abnormal conditions.

The obvious response is *relativizing* normal conditions, either to the proposition or process. Yet, this makes the proof invalid.⁵ Let's relativize to the proposition. Normal conditions appears twice in the proof, but for different propositions. There's normal conditions for the first-order knowledge (N_p) and normal conditions for the secondorder knowledge (N_{K_sp}) . The proof follows only if $N_p \rightarrow N_{K_sp}$.

B&P think any argument for $N_p \rightarrow N_{K_s p}$ likely begs the question. They hold that arguments for $N_p \rightarrow N_{K_s p}$ will turn on whether it's more demanding to know $K_s p$ than it is to know p, the issue at hand.

What about relativizing to process? The proof follows only if $N_{1st-order-proc} \rightarrow N_{2nd-order-proc}$. Is there some process *proc* always available for higher-order belief formation where $N_{1st-order-proc} \rightarrow N_{proc}$?⁶ B&P hold adjudicating these questions just is debating the plausibility of KK.

Greco's Analysis Really is Internalist

Let's return to Greco's non-relativized analysis. B&P argue it's really internalist. B&P start with an intuition pump using the toy account MM:

$$Kp \equiv (Bp \& p \& Mp)$$
 (MM)

Mp a constant propositional function, so $Mp \equiv Mq$ and $Mp \equiv MKp$.

Intuitively, MM is externalist, as someone might Kp, BKp, but doesn't $\neg BMp$. Yet, it's easy to show that MM entails *weak* KK.

MM is obviously a bad account of knowledge. B&P think Greco's analysis suffers the same faults as MM. B&P argue that for both, should the subject know anything, the subject is in a position to know that the additional condition for knowledge over true belief is fulfilled.

They hold that an account of knowledge is externalist either if:

- (a) It is *intuitively possible* for a subject to satisfy the analysis and to be a witness to externalism;
- (b) It is *possible by the lights of the analysis itself* for a subject to satisfy the analysis and to be a witness to externalism.

I see a station clock display 12:05. The clock is broken and it happens to be 12:05. I know I have hands, so it's normal conditions. On Greco's analysis, I know it's 12:05, since normally station clocks are accurate and it's normal conditions.

⁵ See *Appendix* for the formal statement.

(e.g. $N_{vision} \rightarrow N_{introspection}$)

⁶ B&P also argue that normal conditions sometimes must be relative to process-proposition pairs (the normal conditions for judging *scarlet* with vision are more restrictive than judging *red* with vision). They suggest *Kp* and *p* are like this as well.

Where *Mp* is the proposition *Mars has two moons*

 $Kp \& BKp \rightarrow KKp \quad (\text{weak KK})$ MM \rightarrow weak KK

- (1) Kp & BKp (Assumption)
- (2) $Mp \equiv MKp$ (Since M is constant)
- (3) $Kp \equiv (Bp \& p \& Mp)$ (MM)
- (4) $Kp \rightarrow MKp$ (MM, 2)
- (5) BKp & Kp & MKp (1, 4)
- (6) *KKp* (4, MM)

I don't fully get (b). I kinda get it if B&P mean that a subject can know the analysis yet remain a witness to externalism. But why (independently) think anyone means this with externalism? An account is *weakly* externalist if it satisfies (a) but not (b), *strongly* externalist if it satisfies (a) and (b).

We should only expect EnoKK to hold for *strongly* externalist accounts. Since Greco's analysis is weakly internalist, it's not a counterexample to EnoKK.

Appendix

B&P take Greco's analysis as:

 $K_s p \equiv s$ is in a state X_s such that $\Box_N(X_s \to p) \& N$

Greco proves his analysis entails KK. The proof relies on two lemmas:

First lemma

s is in a state X_s such that $\Box_N(X_s \to p) \to$

s is in a state X_s such that $\Box_N(X_s \to (s \text{ is in a state } X_s \text{ such that } \Box_N(X_s \to p)))$

Second lemma

 $\Box_N(P)$ entails $\Box_N(P\&N)$

We can then prove KK...

(1)	K _s p	(assumption)
(2)	<i>s</i> is in a state X_s such that $\Box_N(X_s \to p)$	(1, Greco's analysis)
(3)	Ν	(1, Greco's analysis)
(4)	<i>s</i> is in a state X_s such that $\Box_N(X_s \rightarrow$	
	(<i>s</i> is in a state X_s such that $\Box_N(X_s \to p)))$	(2, first lemma)
(5)	<i>s</i> is in a state X_s such that $\Box_N(X_s \rightarrow$	
	(<i>s</i> is in a state X_s such that $\Box_N(X_s \to p)\&N)$)	(4, second lemma)
(6)	<i>s</i> is in a state X_s such that $\Box_N(X_s \to K_s p)$	(5, Greco's analysis)
(7)	s is in a state X_s such that $\Box_N(X_s \to K_s p)$ & N	(3, 6)
(8)	$K_s(K_sp)$	(7, Greco's analysis)
(9)	$K_s p \to K_s(K_s p)$	(1, 8)

If we relativize normal conditions, the proof no longer follows. Consider relativizing to the proposition. The *N* in Line 3 is normal conditions relative to *p* ('*N*_{*p*}'). The *N* in line 5 is normal conditions relative to $K_s p$ ('*N*_{*K*_s*p*}'). The proof follows only if $N_p \rightarrow N_{K_s p}$. Where *N* symbolizes 'conditions are normal' and $\Box_N p$ symbolizes 'in all normal worlds, *p*'.

This first lemma is basically just $(P \rightarrow Q) \rightarrow (P \rightarrow (P \rightarrow Q))$.